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. . \ . S. Francis !
-, RE NOTE #21 .

January 19, 1978

RESISTIVE PAPER FIELD MEASUREMENT METHODS

AND INSULATOR CORONA RING DESIGN

I. General Considerations

When a voltage is applied to a system of conductors, the
electrical potential between them is the solution of Laplaces
equation for those particular boundary conditions. Sometimes
in RF work we have to deal with large voltage, and hence large
electrig fields, and it becomes very desireable to know just
how large these fields are, as sparking problems can become
most annoying. |

Computers can numerically reach a solution to Laplaces -

equation, but with complicated geometries of conductors the

- boundary conditions that must be satisfied are tedious to specify

to the computer, and such programs require a lot of memory space.

An alternative approach to solving L. eq. is using resistive
paper. By using silver cdnductive paint one can designate the
desired equipotential surfaces simply by painting them on the
paper. Then when a voltage is applied to the desired suffaces,

a small current flows through the . paper, prdducing a continuously
varying electrical potential on the surface of the paper that
automatically satisfies Laplaces eqn. Thus by mapping equipptentials
and determining the gradient of the potential at points of

interest, we may "measure" the electric fields at those points.

0f course, the paper is only a two-dimensional surface, and
care must be taken when attempting to model a 3-dimensional con-
figuration on it. Ultimately we must make use of soﬁe symmetry

of the 3~dimensional system in order to accurately model it on



paper. A particularly simple system of conductors to modél on
paper is that comprised of two'infihite parallel planes are
themselves infinite planes, parallel to and in between the.two
conductors. If we look at a éross—section of this system by
intersecting it by a plane perpendicular to it, we have a pair
of infinite pakrallel lines, with equipotentials being also
infinite lines. If we paint‘two conducting infinite parallel
lines on resistive paper, and apply a voltage between them, we
get the same result as the cross section of the 3-dimensional
system. Another simple system is one of two infinite parallel
strips as in a parallel plate transmission liné. In this case,
we notice that a cross section of this is just two parallel finite
lines.

As you have already guessed, this cross section is our
2-dimensional model or resistive paper, aﬁd fheoretically gives
exact results, as long as the actual transmission line is
infinitely long. If it is not infinite, then we have edge effects,
and the filelds at the ends are not quite what the paper model
says. However, if the length of the line is much larger than the
separation and width of the strips, then not much error is intro-
duced. in quite the same fashion; a coaxial transmission line
may be represented in two dimensions, by its cross-section
perpendicular to its axis of cylindrical symmetry. All these
representations give measurements of potentials and gradients
that are theoretically exact in the limit that the planes or
lines extend infinitely in the direction perpendicular of the
plane of the cross-sections that are their 2-dimensional repre-

sentations. I have made drawings of these systems and corres-



ponding 2-dimensional modelé, these being the firstlpage of
illustrations. - |

In some cases, however, we have no such symmetry to enable
us to construct an accurate 2-dimensional model of a 3-dimensional
system. One such case is that of a section of coaxial trans-
mission line,-whoée length is small compared to the inner and outer
radii. In this instance edge effects are most significant, and we
cannot use the cross section that is perpendicular to the axis
of symmetry. We can however use the cross section produced by
intersecting the 3-dimensional system with a plane which contains
the axis of symmetry. Now, though, we must realize that this
cross-section cannot give us the proper results as we can under-
stand by considering the case of an infinite coaxial transmission
 line, this time represented by its cross-section that contains
its axis of symmetry. Let us, for arguments‘sake, call the inner
conductors (outer) radius a, and the outer conductors (inﬁer)
radius b. Then the cross-section of this transmission line is just
four infinite parallel lines, parallel to, say, the ¥ axis, and
, intersecting the X axis at X=-b, -a, *a, and +b, Since we are at
present interested in the electric field between the two conductors
(that is in the regions -b<x<a and a<x<b) and it doesnkt mattér
which side we consider, let us consider only one half of this
cross-section, with the inner conductor at X=a the outer at X=b,
Now the 2 dimensional representation of our_coéxial transmission
line is precisely that of our system of two infinite parallel planes,

separated by the distance d=b-a.



Drawing these two parallel lines on resistive paper, and
painting them in with conductive paint to produce the desired
equipotential bounding conditions, and applying a voltage V across
them we see as 1is no surprise, a uniform gradient (-E field) of
V/d, which is the precise electric field for a system of infinite
parallel plane_conductors. It is a .well known result of Gauss'
law, however, that the electric field between two coaxial cylindrical
conductors varies as 1l/r, r being the distance from the common axis.
Thus one may compute the field between the conductors by saying
E(r) :K/r,.K being same constant that depends upon the voltage
betwéen the two conductors (the 1/r dependence being independent
of V, as is the whole (dense) family of equipotential curves, both
of these being a consequence of the unique solution of Laplaces
. equation for the coaxial geometry under consideration). Withs the
knowledge thatV=—S:E ds and E=K/r, we get V=-K Sz 1/r dr, using
appropriate symmetry, and find V=-K 1ln b/a, the minus sign
indicating that the direcfion of integration went from the larger
to the (relatively) smaller potential. Thus K=V/(1ln b/a), (dropping
the sign) and |[E(|=K/r, the direction of the electric field being
a trivial matter.

All this 1s quite elementary, but helps to illustrate the
nafure of an intrinsic error that may be incurred whenrone wants to
use a two dimensional model of a 3-dimensional system. If the
reader is not already asleep, I propose to e#plain how these concepts
are used in designing parts of the new RF system, and present some

of the results of these investigations.



IT. .Corona Ring Sparking Test

When my first efforts éppeared‘to say that our original
design of the insulator corona ring would not allow us to put
100 KV on the dees, it was decided to put this resistive paper
technique to the test. Consequently a simulation of our corona
fing was machihed out of aluminum, a disk about 3 inchés thick,
18 inches in diameter, with edges rounded with curves of radii
1/2 inch and 3/8 inch. (Illgstration in_back). This disk was.
then centered inside a steel drum of diameter 22.5. inches, the
idea being to see how much voltage could be put on the disk (relative
to the drum) without causing that nasty sparkiﬁg. Meanwhile, I was
to paint up a resistive paper model of this and determine what this
~critical voltage is to,shall we say, calibrate this paper
~technique. The second page of drawings shows this test setup and
2-dimensional model. The seven points on the edge of the disk
labeled A-G are the pointé I "measured" the gradients at. Putting
10 volts on the disk, with the drum at ground, located the 9.50 volt
equipotential and measured the distance d of this equipotential from
the disk at the points A-G. Since IEI =§?V, or V/d if d is
relatively small, I get an estimate of the electric field. Since
we want the ring to hold about 100 KV, and 5% of 100 KV is, of
course, 5 KV, my zeroth order estimate of the gradients are
5/d KV/in, with 4 in inches. But now I must invoke the earlier
argument about the error incurred when modeling a cylindrical
system as I have in this test. With a coaxial fransmission line
of inner radius a=9" and outer radius b=11.25", and a voltage
of 100 KV across them, we find the gradient at the surface of the

inner conductor to be 49.8 KV/in, since E(a) = K/a, K=V/1ln b/a,



or E (a)=V/a 1n b/a = 100 XV/9" 1n (11.25/9) = 49.79 KV/in.

But in the 2-dimensional model of the coaxial transmission line
that consists of 2 parallel lines (as in illustration) we measure
with 100 KV across a separation of 2;25 inches, a gradient of

100 KV/ 2.25 in, or u4h.uy KV/in. Thus at the radius a, this
technique undefestimates the electric field by about 12%. So

my first order estimates of the gradients are the zeroth order

ones multiplied by 49.79/u44.44 = 1,120. This fudge factor I call
the cylindrical correction factor, and is different. for different
radii, and different geometries. The results of these measurements

are given in the table below, assuming 100 KV on the disk.

- Point Distance to Zeroth order field First order Fiel

95% equipotential (KV/in) - (Kv/in)
(in) : ' - '
A . .058 ) 86.2 896.5
B .055 o 80.9 101.8
C . 050 100.0 112.0
D .085 58.0 . 65.0
E .062 : 80.6 - 90.3
F .067 . 74,6 83.6
G

075 - 66.7 h.7

From this table we see that the largest gradient orcurs at point
C, near the outside edge of the smaller radius of curvature, as
one who is familiar with solutions of Laplace's equation would
expect. The test was made, the disk was able to hold 90 KV DC
before sparking occurred. From my previous calculations, 90 KV
on the disk should result in 112x%(.9)=100.8 KV/in at point C.

At this point I swallow my pride and point out that value of electric



field that causes sparking.in air under atmospheric conditions is
very close to 80 KV/in. My cohfidenqe in this technique ever so
slightly shaken by this 20% discrepanéy, I was most anxious to

knoh at which point on the'disk sparking did occur (as the next
highest field when i measured resulted in only a 10% discrepancy).
Thanks to an idea by J. Riedel and technical assistance by D.
Johnson, the sparking test was reconducted, and this time a pinhole
camera was used to record the spark arcs, to determine their origin.
Lo and behold, the photographs (shown on a later page) reveal the
fact that the sparking originated on the edge of the disk deéignated
as the point C on my 2-dimensional model. This news was reassuring,
as it agreed with my measurements.as to where the largest gradient
was. So I took heart at such qualitative agreement and set out

to find the cause of the quantitative discrepancy.

So 1t seems that this resistive paper technique»oﬁer estimates
gradients by about 20%. This is most likely due to the fact that
the conductive pgint is not an especially good conductor, consequently
the very edge of the paint doesn't represent the full voltage
equipotential (100 KV or whatever), bﬁt the true 100% voltage
curve lieé a small distance in from the edge. Also, the finite
thickness of the resistive paper and the fact that the conductive
paint is only on one side is a significant factor in this error,
since the current flow (and consequent IR voltage drop) in the
paper doesn't stop exactly at the edge of the paint, but goes
on a short ways, about 10 mils in this case; The question arises:
is this difference between the apparenf edge and the "effective
edge" of the paint a constant factor or one that is dependent upon

the value of the gradient that one is trying to measure? At first



I thought that the erfor’involvéd here was proportional to the
gradient measured so only é simplé fudge factor was needed. But
Ihhad a model of what was going on that involved the solution of
Laplaces equation subject to the finite thickness of the paper
and the conductive‘paint equipotential on just one side of the
paper. In this mcddel, all lines of current flow (electric field
lines) cannot terminate exactly on the edge of the paint,_for it
would produce tbo large a current density, but some curreﬁt must
flow past the edge and reach.the paint from underneath. This
would create an "effective edge" of the paint somewhat behind the
~apparent or visual adge of the paint; .This implies (through the
"Uniqueness theorem") that this difference between the apparent and _
"M"effective" edge of the paint is dependent only on the properties
(thickness mﬁ,conduétivity) of the paper itself and 1s independent
" 6f the value of the gradient being measured.. But which is "correct"?
After much head scratching (and cursing under my breath), a
modest piece of detective.work uncovered an obscure and previously
misinterpreted bhit of data. This was a measurement of the gradient
between two parallel conductive lines on resistive paper, length
one foot, separation of 2.94 inches. Sihce the length of the lines
was over 4 times their separation, measurements between the lines
should be essentially free of edge effects. The measured distqnce
to both the 0.5 volt and 9.5 volt equipotentials from the ground and
10 volt lines, respectively, was 0.135". Thé expected value of
the distance was (2.94)x(.05)=0.147 inches. In this case the
difference between the effective and apparent edge of the paint
was .012", 1In the sparking test model I measured at point C a

distance to the 95% potential of .050", corresponding to a field of



100.8 KV/in with 90 KV on the disk, this value of the field already
reflecting the so-called éylindrical correction, the nafure of
which I have laboriously elucidated.. The actual value of the field
was 80 KV/in, as 1t just caused sparking. So the distance to the
95% potential should be .063", since V=E/d or in numbers, (100.8)x
(.050)2(80)X(:063).' Notice that this difference between the measured
distance and what should have been measured distance is .013", the
difference between the effective and apparent edge of the paint.
This is in very good agreement with the results of my parallel line
measurement (of .012" difference) even though the parallel line
measurement was for a field of only 34 KV/in. 1In this light I
happily (if not hastily) conclude that this error of the edges is
a constant of this particular paper, and that the extra .012 inches
should be added to each of the distances I measured to find
~ gradients, since I always measured the distances relative to the
apparent edge of the paint. In this way I believe we may correctly
interpret these resistive.paper studies, and accurately predict the
sparking behavior of the insulator coréna riné, keeping in midd
the important cylindricgl_correctibn'factor that must be used when
appropriate. |
III. Possible .Corona Ring Geometries

Now that I have expounded upon this resistive paper technique,
I may present the results of the investigations made to determine
the sparking voltage levels of different corona ring geometries.
I shall organize these results in tables that give the fields at
particular points of the various geometries assﬁming 100 KV on
the corona ring. Illustrations appear in the back to show the

different geometries and points used for field measurements.
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All distances d to equipofentials already have been increased by
.012" to correct for errofs intrinsic to this resistive paper
téchnique. I shall not burden the reader with the calculations
for evefy cylindrical correction factor, the procedure has been
explained already and is straight forward. It is enough to say
that I use fop the outer radius of the calculation the largest
radius in the drawing that is the straight part of the outef
conductor, not the tapgred part. This will result in some over-
estimate of the gradients, since this enhancement factor increases
with increésing separation of the inner and outer radii. I apply
this correction only to the largest fields in each case, as these
give us the limitations of each geometry. Finally, from these
largest fields I calculate the largest voltage that each corona
ring is able to hold without sparking, to give a comparison of all
- the cases, |

The page titled "Original geometry" shows the outer conductor
~of the insulator wavity af R=10.88", but a test was made with
R=11.88" also. So here are the results

. . s = u
Original Geometry, Rout 10.88"%

Point Distance to 95% E, uncorrected E corrected v
of full V max
(in) ‘ (KV/in) (KV/in) (KV)
A .052 96.2 . 106.3
B .082 61.0 67.4 75.3
C .062 80.7 89.2
R =11.88
Point d out
. E, uncorrected E corrected v
(in) (KV/1in) | (KV/in) PR
A .068 73.6 85.1
B 094 ' 53.2 61l.5 ' 94.0
C 077 65.0 - 75.2
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It appears that moving the outer conductor out an inch does not
reduce the fields at the surface of the corona ring enoughf to

allow it to hold 100 KV. So we try to remedy this by using larger

radii of curvature on the shield, thereby giving the electric field
lines terminat;ng'on the curve more room to "spread out", reducing
the field strength at the surface. The drawing entitled "Modified
Geometry I" shows two cases in one drawing, the case where
Rl=l/2", R2=ll/lé", and where Rl=5/8", Ré=3/4". The outer conductor
is at R=11.88" in both cases.

Modified Geometry I

Point d -E, uncorrected E, corrected VmaX
(in) (K¥/in) (KV/in) (KV)
R,=1/2" R,=11/16"
A .099 ' 50.5
B 0072 69.""’ '
C .068 73.5 _ 4.7 94 . b
D .080 62.5
E .077 64.9
- - a/ut
Rl—5/8", R2 3/4
A .102 Hg.g
L0777 6L, :
g .072 & .4 79f5 _ 100.7
D .075 66.7 ’
E L0717 4.9 .
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Increasing the radii of curvature did increase the capacity
of the corona shield, so I made one more modification, ing¢reasing
the radii of curvature to 1 1/8". This illustration is the
"Modified Geometry II" page, and I fested this shape for two

positions of the outer conductor, namely for R=10.88" and R=11.88",

Modified Geometry II

Point d E, uncorrected  E, corrected Vmax
(in) (KV/in) (KV/in) _ (XV)
R = 10,88"
A .087 57.5  out
B 074 67.6
C .067 74.6
D .062 80.6 88
E .059 84.7 81.0
F .062 80.6
G . 067 74.6
- 1t
ROut = 11.88
A .107 )
B .084L 59.5
C .087 57.5
D .080 62.5
E o077 64,9 73.0 109.6
F .078 L. 1 '
G

.08 . 63.3

So we find that increasing the radii of curvature further gets
us what we want, namély, an insulétor corona ring that will hold
over 100 KY. Unfortunately, it was necessary to increase the
outer conductor radius to 11.88 inches (12 in 0.D.). Since the
machine is getting quite crowded near the insulator cavities, it
would be nice to not have to make them any larger. It may be possible
to make a polynomial interpolation to find some outer conductor radius
that would enable the insulator shield to hold just 100 KV instead

of 110 KV. Still, it would be nice to have some margin of safety

in this sparking business.



. L XAMPLES OF ACCURATE  J- PImeNSIoNAL  REPRESENTATIONS

34D B a-D

v

=== — ==

!
B Y
/
: 4
. . /
L4
’

-DIMENSIONAL REPRESENTATION REQUIRIVG  CYLINDRICAL
' CoRRECTION  FACTOR '

OR




SPARKING  [£3T Neryp

Steee. Drom o-qokiee

Awmmom D"Sl‘ :

Puastic BuekeT ~—
(wsoum”é szuo)

Rw;f/ye PAPER  MoDEL,  oF TEST sc:'.T'.vP

93
Ne &R %
D .
V>0 |
I
G Fo4

\/: IO VOHS |




gpAR&@é NES 7 P%s?”a’é_&a?f(s

<Co (EY ACEEAPY MADE>




ORI/G!UAL-. CORGMA KINO GEOMETK‘(
[ d-D revassvTaTION )

?
1 |
b
|
| !
| | (NSULATOR
&
Sl
i
I
| |
.
B =
b
I l

OUTER
CouDdueToR

R= 10.%3 f



MomF:ED COEOMA ’ZWG GEOMETK‘( —L




“ouw MOD[F!ED GEOMET/{Y E

R: 0. 33‘(

R=[l.g8"





