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Introduction

To achieve the desired beam quality from the coupled cyclotrons of the CCP project, the
RF amplitude and phase of each cyclotron must be precisely regulated. We are therefore
presented with a control problem in providing consistent regulation of these parameters.
As with any control system, the system’s stability and accuracy are dependent upon the
behavior of the physical modules that measure and maintain the system’s parameters.
Thus, before a control topology can be designed, characterizations of the system’s
components must be made.

Within this RF note, the RF modules which measure and modulate the RF amplitude and
phase are characterized. In addition the K1200 cyclotron itself is characterized. What
are provided are linear mathematical models describing each individual dynamic
response; thus providing a framework with which to design a feedback control system for
the critical regulation of the RF voltage and phase.

Although a control system is currently in use on the K1200 cyclotron, the CCP
requirements are much more stringent. Thus, this RF note presents the characterization
of the RF modules which have a high potential of being used within the CCP RF control
system. Characterizations of the current K1200 models are included for comparisons to
these potential modules. It is important to remember that the new RF modules
characterized here are prototypical and may not be used in the final design. The reason
why they are being characterized now is to determine whether the fundamental
techniques employed in their design will be able to meet the demanding specifications of
the CCP project. Once their characterizations are known, the electronics group will be
able to design a control topology and determine what the modules’ specifications in
terms of thermal drift, etc., need to be in order to meet the requirements for the CCP
project. Therefore, soon to follow will be a RF note describing the actual feedback
control system topology which we intend to incorporate within the CCP RF system.



Phase Regulation Modules

In the case of a single cyclotron, the internal dee-to-dee RF phase separation is a constant
120 degrees. For the coupled cyclotron case, an additional constant RF phase, dependent
upon the operating beam, will be maintained between the two cyclotrons. Although these
phase separations are constant, disturbances and drift within the entire RF system will
result in phase variations from these constant settings. Furthermore, the unavoidable dee-
to-dee coupling, presented by the central region, links any amplitude modulations on one
dee to phase fluctuations on another dee. (For a detailed discussion of this effect, please
see Appendix A.) We must therefore provide a control system that maintains constant
phase. In order to do this, we use a module to detect phase and a module to change
phase. Our entire system therefore consists of the cyclotron itself, along with a phase
detector, and a phase shifter. The linear dynamic response of each of these elements was
measured experimentally and then modeled mathematically. The actual experimental
data for all measurements can be found in Appendix D.

Phase Shifter Linear Dynamic Response Measurements:

In order to measure the linear dynamic response of a phase shifter, some sort of phase
detection must be used. This seemingly contradicts the separation of the phase shifter
and phase detector responses. However, this problem was alleviated by using a Mini-
Circuits RPD-1 phase detector. The RPD-1 is basically a double balanced mixer
operating in a saturated region as a phase detector. With input signals of identical
frequency, its output signal is proportional to the cosine of the phase difference between
two input signals plus higher order terms as given by the following formula,

IF output = A, cos(ds: — do) + A, Cos(2w - t) + [higher order frequency terms] (1)

where A, , are amplitudes dependent upon the phase detector, ¢, is the phase of the
signal at the RF input port, ¢, is the phase of the signal at the local oscillator input port,

and w is the frequency of the two signals. By using a simple low-pass filter at the IF
output, the second harmonic and the higher order frequency terms can be eliminated.

Since the bandwidth of the RPD-1 is much greater than the anticipated bandwidth of the
phase shifters, the RPD-1 can be viewed as a perfect measuring instrument except for the
non-linear output response imposed by the cosine function. This non-linearity is
overcome by centering small phase modulations about 90 degrees. The particular setup
used for measuring the linear dynamic response of the phase shifter modules is shown in
figure 1.
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Figure 1: Phase Shifter Linear Dynamic Response Measurement Setup

The RF synthesizer provided a signal to the phase shifter for phase modulation, while
simultaneously providing a constant phase reference signal to the RPD-1 through the RF
power splitter. The output of the low-pass filter was therefore proportional to the phase
difference between the phase-modulated signal and the constant phase reference signal.
The coaxial cables and the initial phase shift were always chosen so as to center the phase
modulations about 90 degrees. The 20 dB attenuating pad was used as a result of the
RPD-1 presenting an impedance mismatch while operating in a saturated mode.
Furthermore, in order to provide the required 7 dBm signal levels at the RPD-1 inputs in
the presence of the attenuators, an amplifier was incorporated. Finally, the 6

dB attenuator merely provided signal level matching at the amplifier inputs.

An initial reaction to the above experimental setup would be to think that the amplifier
and attenuators would influence the measured response. However, this is not true. The
particular amplifier used was a Mini-Circuits ZHL-1A which has a rated bandwidth from
2 MHz to 500 MHz. Furthermore, the attenuators used are rated from DC to 1500 MHz.
Since the experimental phase modulations were kept small enough to be considered
narrowband phase modulation, the spectrum bandwidth of the phase modulated RF signal
was no greater than perhaps twice the phase modulating signal. Furthermore, the injected
phase modulating signal never even exceeded 2 MHz for the fastest phase shifter. Thus
the occupied spectrum of the phase modulated RF signal was well within the rated
bandwidths of the amplifier and attenuators; thereby rendering these devices transparent.

By injecting a sinusoidal phase shifting command, A®,, , both the amplitude and phase
of the phase detected signal, A®,;, relative to this command signal, could be viewed on

the oscilloscope. At first, the terminology is quite confusing when talking about the
linear dynamic phase response of a phase shifter. However, this confusion is easily
remedied by paying close attention to the individual terms. A linear dynamic response
has both a magnitude and a phase response as a function of frequency as given by a
transfer function of the following form,



G(s)=[6()<o . (2

In the case of the phase shifter, we wish to determine the linear dynamic response of the
phase shifter with respect to its phase shifting input command. Therefore for clarity, the
RF phase terms will be denoted with ¢ and @, while the dynamic response phase terms

will be denoted with 4.
The individual responses for the current K1200 phase shifter, and the potential 360°

phase shifter follow. Each magnitude response was normalized with respect to the
magnitude response at DC since the input command signals are DC coupled.

Current K1200 Phase Shifter

The linear dynamic response of the currently used K1200 phase shifter was measured
using the setup discussed above. The results are given in figure 2



Current K1200 Phase Shifter
Experimentally Measured Linear Dynamic Response
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Figure 2: Current K1200 Phase Shifter Linear Dynamic Response

Using an application created within Matlab, a mathematical model was fitted to the above
data. The results of the mathematical fit are compared to the experimental data in figure
3. In particular, as can be inferred from figure 2, the current K1200 phase shifter
exhibited a double pole at 18 kHz.



Current K1200 Phase Shifter
Comparison of Mathematical Fit to Experimental Data
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Figure 3: Current K1200 Phase Shifter Linear Dynamic Response

The transfer function used to produce the mathematical fit was a simple second order
system given as

1279-10"
(s+1131-10°)°

K1200PS(s) = , Where s=jo = j2af

It is natural to question whether the phase shifter’s response is also a function of the RF
operating frequency. This was investigated by measuring the linear dynamic response at
RF frequencies of 11 MHz, 18 MHz, and 27 MHz. No discrepancies were observed
between the linear dynamics responses at these three frequencies. Therefore, it is safe to
assume that the above mathematical function characterizes the phase shifter over the
cyclotron’s frequency operating range.



Potential 360° Phase Shifter

Similarly, the linear dynamic response of the potential 360° phase shifter was
experimentally measured using the setup of figure 1. Again, the coaxial cable lengths
and the initial phase shift were chosen so as to center the phase modulations about 90°.
The

Experimentally measured response is shown in figure 4 along with a mathematical fit.

Proposed 360° Phase Shifter
Comparison of Mathematical Fit to Experimental Data
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Figure 4: 360° Phase Shifter Linear Dynamic Response

As can be seen from the figure, the mathematical model is valid only up to 500 kHz.
However, its valid frequency range is well beyond any of our phase detector modules, as
will be seen shortly; thus providing a suitable approximation with which to work. Notice
the increased bandwidth over the current K1200 phase shifter. The above mathematical
fit was based on a sixth order system as given by the following equation,

15629-10%
(s2 +2.01-10°5+158-10")(s? +133-10°s + 484 -10'2)(s +181-10%s + 2.05-10%)

360PS(s) =



As for the magnitude response not matching perfectly at the onset of the “break point’,
this is of little concern. In a negative feedback system, the closed loop response takes the
form of,

A(s)

P97

Instabilities occur when the closed loop gain term, £(s) A(s), has an effective 180°

component magnitude greater than or equal to 1. This statement is slightly altered from
the usual statement that you can find in the text books. Most books will state that
instabilities occur when the closed loop gain term has a magnitude greater than or equal
to 1 for the frequency at which it also exhibits a 180° phase shift. By considering the
initial statement provided here, we have expanded the definition by considering an
effective 180° component. For instance, the closed loop gain term may have a magnitude
greater than one at some phase angle less than 180° degrees. By decomposing this into
quadrature terms, we obtain the effective 180° component as well as a 90° component. If
this effective 180° component actually has a magnitude greater than or equal to 1
instabilities will occur. Our mathematical model above actually ‘over-predicts’ the
experimental response by exhibiting a slightly larger gain over the initial ‘break point’.
The key point is that the mathematical model accurately predicts both the magnitude and
phase term over the valid frequency range.

Just as with the current K1200 phase shifter, the functional dependence of the 360° phase
shifter response upon the RF operating frequency was investigated. Again, no
discrepancies between responses at RF frequencies of 11 MHz, 18 MHz, and 27 MHz
were observed.

Phase Detector Linear Dynamic Response

In order to measure the linear dynamic response of a phase detector, some sort of phase
shifting module must be used. This appears to defeat the objective of separating the
responses of the phase shifter and the phase detector. However, a phase detector
response could be extracted from a combinational phase shifter plus phase detector
response if the phase shifter response was previously known; provided that the phase
shifter had a much larger bandwidth than the phase detector. Conveniently, the
previously determined phase shifter responses provide such a scenario. Due to the
potential 360° phase shifter exhibiting a much larger bandwidth than the current K1200
phase shifter, the former phase shifter was incorporated into the measurements. In
particular the measurement setup can be found in figure 5.
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Figure 5: Phase Detector Linear Dynamic Response Measurement Setup

In this setup, the objective is to inject sinusoidal RF phase modulations at the phase
shifter in order to determine the phase detector’s response to these modulations. Again,
the detected phase difference, Ad,, will be a phase-shifted sinusoid of the injected
A®,, signal with an amplitude proportional to the gain of the system at that particular
frequency. It is again important to note that the phase term of A®;, as denoted by &,

is characteristic of the system’s dynamic response and is not describing any RF phase
term.

Potential 360° Phase Detector

The proposed 360° phase detector has an output which is linearly proportional to the RF
phase difference between the two RF signals at its inputs. The linear range extends from
-180° to +180°; thus producing a periodic output with a period of 360° as shown in figure
6.
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Figure 6: Periodic Output Response of the 360° Phase Detector

Due to the linear output response over one period, the phase modulations no longer
needed to be restricted around 90° as with the Mini-Circuits phase detector. However,
the precaution taken was to restrict the phase modulations from being near to the
discontinuous wrap-arounds as seen in the periodic output response of figure 6. For
convenience, the phase modulations were centered around an initial RF phase difference
of 0°. The experimental measurements can be found in figure 7.
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360° Phase Shifter + 360° Phase Detector
Combinational Dynamic Response
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Figure 7: 360° Phase Shifter + 360° Phase Detector Combinational Response

The fact that transfer function magnitude responses are given in logarithmic form
provides a convenient means for combining and extracting individual system responses;
especially when considering the additional convenience afforded by using frequency
domain representations in the form of LaPlace or Fourier transforms. Transformations
from the time domain to the frequency domain conveniently transform the complex
operation of convolution into the much simpler operation of multiplication. This is a
great advantage in system theory since the response of a system to any input is given by
the convolution of that input with the system’s impulse response as given by

yO=x®®g®), @)

where y(t) is the output, x(t) is the input, and g(t) is the system’s impulse response.
Upon transforming into the frequency domain with LaPlace transforms, the frequency
domain output response is merely given as,

Y(8) = X(8)-G(9),
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where Y (s), X(s),G(s) are the LaPlace transforms of the output, input, and system time
domain functions respectively. When connecting two systems together in series, as
shown in figure 8, the frequency domain response of the combined system is given as,

Y(8) = X(5)-G,(5)-G,(5) . (4)

Input X(s) Output Y(s)

Figure 8: Combined System Representation

The more general way of representing the input to output relationship of such a system is
to express it in terms of a transfer function as

X(S) _Gl(s) C-:'2 (S) (5)

which has both a magnitude response and a phase response expressed as

% = Gl(s) . Gz (S) = ‘Gl(S)‘ . ‘GZ (S)‘ 4( Gl(s) + GZ (S) ) _ (6)

It is now clearly evident why logarithmic magnitudes are used. Since
log(A-B) =log(A) + log(B) (7a)

and

Iog(g) =log(A)-log(B) , (7b)

the logarithmic magnitude response and the phase response of a combinational system
are merely given as the addition of the individual responses. Furthermore, when
extracting an individual response from a combinational response, the extracted
magnitude and phase response is merely given as the subtraction of two responses.
Therefore, a combined response given as,

C(8) = G,(5)- G, (3), (8a)

can be expressed as,
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C(s) =[6,(5)|+]G, (5), (8b)
ZC(s) = £G,(s)+ £G,(s),  (8c)

where the magnitudes are given as logarithmic magnitudes. On the other hand,
if C(s) and G, (s) is known, then G, (s) as given by

C(s)
6.9=Gq O
can be expressed as,
G.(s)=lc.0)-le9)]  (@b)

£G,(s)=£C(s)—«£G,(s). (9

The above relationships can be used to extract the response of the 360° phase detector
from the combinational response of figure 7. Merely subtracting the previously measured
response of the 360° phase shifter as shown in figure 4 from the combinational response
of figure 7, results in the 360° phase detector response shown below in figure 9. Also
included in this figure is the mathematically fit response.
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360° Phase Detector
Comparison of Mathematical Fit to Experimental Data
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Figure 9: 360° Phase Detector Linear Dynamic Response

The specific mathematical transfer function estimate for the 360° phase detector response
was based upon a 5" order system as given by,

3113-10%
(s+6.912-10%)(s* +8.796-10°s + 3.948-10")(s* + 4.273-10°s + 1141-10%)

PD360(s) =

Similar to the phase shifter dynamic responses, the functional dependence upon the RF
operating frequency was investigated. Once again, no discrepancies were observed
between the responses at RF frequencies of 11 MHz, 18 MHz, and 27 MHz.
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Current K1200 Phase Detector

The current K1200 phase detector utilizes two of the RPD-1 Mini-Circuits phase detector
that was used for measuring the phase shifter responses. The RPD-1 has a phase detected
output that is rated from DC to 50 MHz. However, its response will mainly be limited by
the op-amps which are used within the control signal circuitry. A detailed discussion of
the frequency response of an op-amp can be found in Appendix C for the interested
reader. The material presented there will be highly considered when choosing op-amps
for the final control system modules.

The particular op-amps used within the current K1200 phase detector were PMI OP-17’s.
These op-amps have a typical Gain BandWidth Product (GBWP) of 30 MHz. Even with
a gain of 9 these op-amps will still have an extremely high pole frequency of 10 MHz;
clearly much faster than the potential 360° phase detector.

Although the current K1200 phase detector is faster than the potential phase detector, it
has the undesired limited phase detecting range of only -90° to +90°. Furthermore, its
output is not linear with phase, but sinusoidal. The potential 360° phase detector has a
full range of -180° to +180°. And most importantly, its output is linear over this range.
Furthermore, the speed advantage of the current K1200 phase detector does not offer
much of an advantage over the potential phase detector because the cyclotron’s response,
to be presented later, is the ultimate limiting factor for the control systems.
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K1200 Cyclotron: Linear Dynamic Response to Phase Modulations

It is not adequate to characterize only the phase detector and phase shifter modules. The
cyclotron itself is part of the RF control system. Therefore it too should be characterized
in terms of its linear dynamic response to phase modulations. This was done by

experimentally measuring the combined response of a phase shifter, a phase detector, and

the cyclotron as shown in figure 11.

Dee A Subsysten » Phase Trimme Phase Detector

AD
Phase Shifte K1200 Dee A

K1200 Freg. Distribution Syste| Dee B Subsystem

Dee C Subsystem

[l

Signal Generato|

Oscilloscope g

Figure 11: K1200 Cyclotron Phase Response Measurement Setup

The RF system of the K1200 cyclotron naturally provided a convenient means by which
to measure a single dee subsystem’s response to phase modulations. As shown in the
above figure, a RF phase reference is provided to the phase detector through the delay
line that follows the phase trimmer module. The second RF output of the phase trimmer
module is fed into the phase shifter which then leads to the RF transmitter and the dee
resonator. Thus, the experimental setup was identical to the normal operating system of
the cyclotron. The phase regulation modules used in the setup were the 360° phase
shifter and 360° phase detector. The measurements were performed by injecting
sinusoidal phase shifting command signals into the phase shifter and measuring the
corresponding output of the phase detector. Therefore, the measured response was
representative of the combinational system consisting of the phase shifter, the cyclotron
dee, and the phase detector as shown in figure 12. The results of the experimental
measurements can be found in figure 13.

Input X(s) P 360PS (s) > Cyc_PR (s) P 360PD (s)

A 4

Output Y(s)

Figure 12: Combinational System of the Cyclotron’s Phase Modulation Response



18

K1200 Cyclotron Dee + 360 Phase Shifter/Detector
Linear Dynamic Response to RF Phase Modulations
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Figure 13: K1200 Cyclotron RF System Response to RF Phase Modulations

Considering that phase modulating a carrier with a certain signal is equivalent to
frequency modulation with the derivative of that signal, and that the cyclotron resonator
exhibits a certain quality factor (Q), the bandwidth of the cyclotron’s response to phase
modulations can be estimated. The time domain signal representation of a frequency
modulated signal is given from [3] as

o () = Acos(27r-[fct Tk, J:S(r)dr}) (10)
where f_ is the carrier frequency, Kk, is a proportionality constant relating frequency

changes of the cosine term to amplitude values of the modulating signal, s(z). The
integral of s(7) is usually denoted by another function g(t) as given by
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t
o) =] s()ydz. (11
Therefore, the Fourier transform of g(t) is related to the Fourier transform of s(z) by

S(f)
G(f)zm. (12)

For narrow band frequency modulation, the FM waveform is reduced by expanding eq
(5) using trigonometric identities and keeping the first term of a power series expansion.
The expression is given as

Aew (t) = Acos(2af .t) — 27 Ag(t)k, sin(2af t) . (13)

In conclusion, the narrow-band frequency modulated waveform looks like a transmitted
carrier amplitude modulated signal except that the equivalent modulating signal is equal
to the integral of the original modulating signal. In the case of phase modulation,
g(t) will be equal to s(7), and not its integral. Thus, the process of integration in

g(t) will cancel out the derivative operation on s(z). Therefore, narrow-band phase

modulation looks almost identical to transmitted carrier amplitude modulation. Of
course, as the modulating proportionality constant increases, narrow-band phase
modulation transforms to broad-band phase modulation; resulting in an increased
bandwidth from the standard transmitted carrier amplitude modulation bandwidth. For a
detailed discussion of the above formulations, the interested reader is referred to
Appendix A.

So how does this pertain to the results that we have observed in measuring the
cyclotron’s response to phase modulations? Well, the initial low-frequency sinusoidal
phase modulations were kept close to the narrow-band region. The actual modulation
index was approximately equal to 2, thus producing a few Bessel function coefficients
outside the narrowband case. This would explain the measurement of a second order
magnitude response as opposed to the expected first order response for a narrowband
case. (For adiscussion on this, please see Appendix A). The slight decrease in the
experimentally measured response occurring at 5 kHz was a result of increasing the
modulation index; thus resulting in the sinusoidal modulating signal occupying an
increased bandwidth which in turn was dampened further from the effect of the
cyclotron’s quality factor, Q.

The modulation index was increased at 5 kHz because the output magnitude was
becoming too small to be accurately measured with the oscilloscopes at this frequency.

As discussed in Appendix A, our control system should only have to handle narrow-band
phase modulations in the presence of noise. Thus we would naturally tend to
characterize the cyclotron’s response as a first order system. However, any initial 3 or 4
degree phase offset would put us slightly outside the narrowband case, similar to the
experimental measurements. Thus for a safety factor, we will use a second order
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approximation whose pole location follows the quality factor of the cyclotron as a
function of RF frequency. The second order pole location will be taken as the bandwidth
of the cyclotron as based upon the quality factor at each RF operating frequency.

For the particular measurements at 13.5 MHz, the cyclotron’s response was extracted
using the previously measured response of the 360° phase shifter and the 360° phase
detector. Approximating the cyclotron’s response with the second order system based
upon the 3 kHz bandwidth at this frequency, results in the following comparison shown
in figure 14.

Extracted K1200 Cyclotron Response to Phase Modulations
Comparison of Mathematical Fit to Experimental Data
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Figure 14: Mathematical Model for K1200 Cyc. Phase Modulation Response at 13.5MHz

As a function of RF operating frequency, the predicted pole locations for the second
order system characterizing the K1200 cyclotron’s phase modulation response are
determined from the Q factor as derived from the shunt resistance measurement made in
[1]. The following table lists the results.
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Predicted Measured
Freq (MHz) 0 BW (kHz) Pole Location (kHz) Pole Location (kHz)
9.5 5296 1.794 0.897
11 5597 1.965 0.983
13 5938 2.189 1.095
13.5 ~5500 ~2.4 ~2.4 3
15 4534 3.308 1.654
17 5007 3.395 1.698
19 4971 3.822 1.911
21 4408 4.764 2.382
23 4030 5.707 2.854
25 3558 7.027 3.513
26.5 3241 8.177 4.088

Table I: K1200 Cyclotron Pole Location for Phase Modulation Response

K1200Cyc_ PM(s) =

(s+27 -a)® "’

(27 -a)®

a =Pole Location

The measured pole locations will be filled in as time permits. In the meantime, the
control design can proceed based upon the predicted pole locations.

CCP K500 Predicted Linear Dynamic Response to Phase Modulations

Similarly, the pole locations for the CCP K500 cyclotron can be predicted from the
simulated Q factors given in [2]. The results are given in the following table.

Predicted
Freq (MHz) 0 BW (kHz) Pole Location (kHz)
11 4232 2.599 2.599
13 4133 3.145 3.145
15 4080 3.676 3.676
17 3971 4.281 4.281
19 3827 4.965 4.965
21 3659 5.739 5.739
23 3483 6.604 6.604
25 3305 7.564 7.564
27 3001 8.997 8.997

Table Il: CCP K500 Predicted Pole Locations for Phase Modulation Response

CCPK500_PM(s) =

(s+27 -a)*’

(27 -a)?

a =Pole Location
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Dee Voltage Regulation Modules

Just as the phase regulation modules have a linear dynamic response to RF phase
modulations, the dee voltage regulation module has a linear dynamic response to RF
voltage (amplitude) modulations. Since the ability of the voltage regulation module to
accurately maintain a constant RF voltage is highly influenced by its dynamic response, it
is crucial to characterize this dynamic response. The experimental setup used for
measuring the linear dynamic response of a dee voltage regulator was conceptually
similar to the setup used for measuring the dynamic response of a phase regulation
module. In particular, the experimental setup used is shown in figure 15.

v

Dee Voltage In

DVR

RF Synthesizer

Test Input

Peak Output

Signal Generator

Figure 15: Dee Voltage Regulator Linear Dynamic Response Measurement Setup

Both the current K1200 DVR and the potential DVR modules provided a test input into
which an amplitude control signal could be injected. Also included on both modules is a
dee voltage input port which is normally used for a feedback input signal. A signal
proportional to the peak detected RF signal coming into this port is provided as the peak
output signal shown in the figure. Therefore, by operating the module in open loop, the
dee voltage input port could be used as a peak detected signal of the modules own output;
thereby providing a means by which to measure the DVR’s linear dynamic response.
With a sinusoidal amplitude control signal at the test input, the peak output would also be
a sinusoidal signal with a magnitude and phase relative to the control signal. By
sweeping the sinusoidal control signal’s frequency, the linear dynamic response was
measured.
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Current K1200 DVR Linear Dynamic Response Measurements

The linear dynamic response of the DVR currently utilized in the K1200 RF control
system was measured using the setup of figure 15. The experimental measurements are
shown in figure 16 along with a mathematically fit response.
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Figure 16: Current K1200 DVR Linear Dynamic Response

The mathematical transfer function used to characterize the K1200 DVR was based upon
a 3" order system as given by

9.922.10"
(s+6.283-10%)(s + 1257 -10°)2

K1200DVR(s) =



Potential DVR Linear Dynamic Response Measurements
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The potential DVR model was measured in a manner analogous to the K1200 DVR.
Again, the measurement setup of figure 15 was employed. The experimental results are
shown in figure 17 along with a mathematically fit response.

Proposed DVR
Comparison of Mathematical Fit to Experimental Data
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Figure 17: Potential DVR Linear Dynamic Response

10

The particular mathematical transfer function used to generate the above response was
based upon a 4™ order system given by

DVR(s) =

3.989-10*

(s2 +2.011-10°s+1579-10%°)(s® +8.042-10%s + 2527-10™)
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K1200 Cyclotron: Linear Dynamic Response to Voltage Modulations

Just as with the phase control loop, the cyclotron itself influences the behavior of the
voltage regulation loop. Therefore, its linear dynamic response to amplitude modulations
should also be characterized. The experimental setup used to perform such
characterizing measurements is shown in figure 18.

Dee Voltage In

Dee A Subsystem DVR »| RF Transmitter P Cyclotron Dee

-4 Test Input | Peak OutputL
|

A

K1200 Freq. Distribution System Dee B Subsystem Y

Dee C Subsystem

I

Signal Generator Oscilloscope

Figure 18: K1200 Cyclotron Amplitude Modulation Linear Dynamic Response Setup

The DVR module used in the setup was the potential DVR. Again, the DVR was
operated in open loop so that the peak detected dee voltage output could be used as the
response measurement signal. The resulting measurements from the above setup were
characteristic of the combined response of the DVR and the single dee subsystem, which
included both the RF transmitter and the dee resonator. Using the same principle of
system response extractions discussed in the phase regulation section, the response of the
dee subsystem could be extracted from the combined response measurements.

The behavior of the RF transmitter and the cyclotron dee will be a function of frequency,
thus the linear dynamic response will also change with frequency. One representative
measurement of the setup shown in figure 18 can be found in figure 19. Furthermore, the
extracted response of the isolated dee subsystem is shown in figure 20. This extracted
response was achieved by subtracting the previously measured DVR response of figure
17 from the overall response of figure 20.
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Figure 19: K1200 + Potential DVR Linear Dynamic Response to Amp. Modulations
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Extracted K1200 Cyclotron Amplitude Modulation Response
Comparison of Mathematical Fit to Experimental Data @ RF = 15 MHz
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Figure 20: Extracted K1200 Cyclotron Response to Amplitude Modulations

From the above figure it is easily inferred that the mathematical transfer function is a
single order system. The discrepancy between the mathematical fit and the experimental
data towards the end of the data is of little concern. The reason is that the individual
mathematical models for the DVR and the cyclotron produce a combinational result
which accurately predicts the measured combinational response well past the 180° phase
response point. Besides, the viewed discrepancy could be a result of accumulative errors
from two experimental measurements: the DVR response and the combinational
response. For the data shown in figure 20, the single order transfer function is given as,

1131-10°*

VR(S) = — o
Cye VR(S) = (51131107

Considering that the cyclotron dee is a resonator, its quality factor is naturally linked to
the bandwidth of the amplitude modulation response. This can be understood by
considering the above measurement as a modulation and de-modulation process.
Injecting amplitude modulations on the dee voltage produces a frequency spectrum
centered about the cyclotron’s RF frequency with a bandwidth equal to twice the
modulating frequency. Since the cyclotron has a second order bandpass response, the
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amplitude modulated frequency spectrum will be filtered. Furthermore, the de-
modulation process of detecting the amplitude response shifts the filtered spectrum down
to DC; effectively transforming a second order bandpass response to a first order lowpass
response. Thus, the pole location of this first order lowpass response will be intimately
related to the cyclotron’s pass band which in turn is described by the cyclotron’s quality
factor, Q. In particular, the above measurements would indicate that the cyclotron had a
bandwidth of twice the single pole location, or about 3.6 kHz. The actual measured shunt
impedance from [1] allowed for the calculation of a corresponding cyclotron bandwidth
of 3.3 kHz at a RF frequency of 15 MHz. Therefore, as a function of frequency, the pole
locations for the K1200 cyclotron’s linear dynamic response will follow the bandwidth
determined by its Q factor. A list of the measured Q factors as determined from [1] is
given below. Included is the corresponding pole location for the linear dynamic response
transfer function.

Predicted Measured
Freq (MHZz) 0 BW (kHz) Pole Location (kHz) Pole Location (kHz)
9.5 5296 1.794 0.897
11 5597 1.965 0.983
13 5938 2.189 1.095
15 4534 3.308 1.654 1.8
17 5007 3.395 1.698
19 4971 3.822 1.911
21 4408 4.764 2.382
23 4030 5.707 2.854
25 3558 7.027 3.513
26.5 3241 8.177 4.088

Table I11: K1200 Pole Locations for Amplitude Modulations

27-a

Cyc_VR(s) = m

, a=Pole Location

The quality factors in the above table were determined from the shunt impedance
measurements made in [1] for dee A with the simulated shunt capacitance values adjusted
by the percent error between the simulated shunt impedance and the measured shunt
impedance. Although there was a slight error between the predicted pole location and the
measured pole location at an RF frequency of 15 MHz, the predicted pole locations will
be adequate for design until time permits for measurements at the various frequencies and
on each dee.
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CCP K500 Predicted Linear Dynamic Response to Amplitude Modulations

Since the K1200 cyclotron’s response to amplitude modulations was observed to
resemble a first order system whose pole location was determined by the Q factor, it is
reasonable to assume that the CCP K500 cyclotron will also exhibit this same behavior.
Below is a table of these predicted pole locations for the CCP K500 as determined from
the simulated Q factors as given in [2].

Predicted
Freq (MHz) @] BW (kHz) Pole Location (kHz)
11 4232 2.599 1.300
13 4133 3.145 1.573
15 4080 3.676 1.838
17 3971 4.281 2.141
19 3827 4.965 2.482
21 3659 5.739 2.870
23 3483 6.604 3.302
25 3305 7.564 3.782
27 3001 8.997 4.499

Table IV: CCP K500 Predicted Pole Locations for Amplitude Modulations

2r-a .
CCPK500_VR(s) = —(s T2 a =Pole Location
7Z'.
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Conclusion

The system characterizations described in this note provide a mathematical framework
with which to design both the RF phase and voltage feedback control systems for the
Coupled Cyclotron Project. As was observed, the linear dynamic responses of the phase
and voltage regulation modules do not exhibit any dependence upon the operating RF
frequency; however, linear dynamic responses of both the CCP K500 and the K1200 do
exhibit a dependence upon the RF operating frequency. This RF frequency dependence
will be taken into account when designing the RF control system. Soon to follow will be
a RF note covering the actual control system design.
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Appendix A

The Effect of the Dee-to-Dee Coupling Capacitance Upon the Dee Voltage
Phase

One of the most often misconstrued ideas about the phase separation between the
cyclotron dees is that this phase separation should remain constant without need for
feedback control. This idea is false. Besides any 60Hz noise and other disturbances in
the phase modules, the dee-to-dee coupling capacitance links amplitude fluctuations to
phase fluctuations. To understand why this occurs we will consider a first order case of
two identical parallel RLC resonators coupled together through a series capacitance as in
figure 1.

The above circuit has two modes of resonance; a ‘push-push’ and a “push-pull” mode. In
the ‘push-push’ mode, the resonators oscillate in phase with each other at the same
natural frequency as an isolated resonator; thus the coupling capacitor has no effect on
the resonant frequency of this mode. In the ‘push-pull’ mode, the resonators oscillate
180° out of phase with respect to one another at a frequency which is lower than the
natural resonance of an isolated resonator. The frequency separation of the two modes is
determined by the amount of coupling between the resonators. The larger the
capacitance, the larger the energy maintained by the coupling element. Since the rate at
which energy can be transferred to each resonator is fixed by the resonator components,
the amount of energy maintained by the coupling element will influence the amount of
time required to transfer this energy. Thus, for a larger amount of energy maintained
within the coupling element, the longer it takes for this energy to be transferred back and
forth between the coupling element to each resonator. Therefore, the larger the coupling
element, the lower the frequency and the larger the frequency separation between the
‘push-push’ and “push-pull” modes.

In the case of the cyclotron, we are driving each resonator separately at its natural
resonate frequency with a 120° phase separation between each resonator. Due to the dee-
to-dee capacitive coupling which unavoidable exists near the central region, each dee will
couple an in phase component to its adjacent dees. The component is in phase since the
isolated resonate frequency of a dee corresponds to the ‘push-push’ mode. Considering
the first order case of only two dees coupled together, the voltage on dee-1 will be a
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combination of the drive voltage supplied to dee-1 and the coupled voltage due to the
drive on dee-2. A similar situation is true for dee-2 with respect to dee-1. Furthermore,
since the drive sources are separated by 120°, the coupled voltage will cause a slight
phase shift in the voltage appearing on dee-1. Mathematically this can be expressed as

2
V,(t) = Acoswt + Bcos(at +?ﬂ) 1)

Equation (1) can be written using the following trigonometric identity:

Acos(wt+¢,)+Bcos(owt+¢,)=Ccos(wt+¢,;) (2a)

where C = \/AZ +B® +2ABcos(¢,—¢,)  (2b)

Asing ,+ Bsing,
Acos¢ ,+ Bcosg ,

b = tan{ } (2c)

Thus, the resultant magnitude and phase of the voltage on dee-1 will be influenced by the
coupled voltage from dee-2. For small coupling, the second term of equation (1) is small
and the influence is reduced. However, there is always an unavoidable amount of dee-to-
dee coupling. Furthermore, any amplitude fluctuations of the voltage on dee-2 will
resultant in both amplitude and phase fluctuations of the voltage on dee-1. We have thus
linked amplitude fluctuations and phase fluctuations. It is therefore crucial to system
regulation that we provide both phase and amplitude regulation of all the dees. In
addition we must pay attention to the coupling of the phase control loop to the dee-
voltage control loop.
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Appendix B

Mathematical Description of the Cyclotron’s Response To Angular
Modulations

How do we mathematically describe the cyclotron’s response to angular modulation?
Well, we know the amplitude response of the cyclotron as a function of frequency due to
its resonate behavior which can be expressed as a second order system. We also can
mathematically describe the frequency spectrum of a sinusoidally frequency modulated
waveform.

Let’s begin with a sinusoidal carrier representative of the cyclotron’s unmodulated RF
signal:

A (t) = Acos(a,t +¢@,) = Acos(D(t)) (1)

where ¢, represents a constant phase offset which we will set to zero for convenience,
@, 1s the unmodulated carrier frequency, and A is an arbitrary amplitude. When we

begin to modulate the phase term, the phase becomes a function of time and the
waveform can be expressed as

2 on(® = Acos(t+4 (1) (2).

Equation (2) represents a waveform whose phase is a function of time. Based upon the
definition of instantaneous frequency, the phase modulations correspond to frequency
modulations. To see this let us consider the definition of frequency.

In equation (1), the term in parantheses represents a phase angle. The time rate of change
of that phase angle actually represents the frequency of the signal. Mathematically, this
fact is expressed as,

do
. =——  (3).
When we consider a pure sinusoidal waveform with a constant phase offset as given in
equation (1), how was the @, term derived in the first place. Looking at how a
sinusoidal waveform is generated will help to understand the relationship between
frequency and phase as expressed in eq.(3).

The definitions of the sine and cosine functions are based upon the projections of a unit
vector at an arbitrary phase angle upon quadrature axes. A sinusoidal waveform is
generated by rotating the phase angle term around the unit circle at a periodic rate or
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frequency. Therefore, if we rotate the unit vector so that we make 1 revolutionin T
seconds, then the angular rotation rate is expressed in terms of radians as

And at any specific time, t, the value of the sinusoidal function can be evaluated from the
phase angle argument given as

g=0t (5)
It is now clearly seen that the angular frequency is that given in equation (3).

When the phase of the cyclotron is dynamically changed, the cyclotron’s waveform can
be expressed as:

Aoy (1) = Acos(w t + K;s(t))  (6)

where s(t) is the phase angle modulating signal and K; is a proportionality constant
known as the modulation index. It is dependent upon the phase modulating device.

For further insight into phase modulation, let us consider the case when the modulating
signal is sinusoidal or

s(t) =sin(ow,t) (7)

where w,, is the frequency of the modulating signal. Thus the instantaneous frequency,
using equation (3), becomes,

o, (t) = o, + w,, K, cos(o,t) (8)
Furthermore, the phase modulated waveform takes the form
Ao (1) = Acos(wt + K sinwy,t)  (9).

Thus K,, the modulation index, represents the maximum phase shift of the carrier and
w,, K, represents the maximum frequency deviation from the carrier frequency.
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Narrowband PM

For narrowband PM, we will assume that K, is small such that a sine and a cosine term
of K, can be represented by the first term of a MacLaurin series. Using the
trigonometric identity of

cos(A+ B) =cosAcosBFsinAsinB  (10),
equation (9) can be written as
Aoy (t) = Acosaw tcos(K, sinm,,t) — Asinao tsin(K,; sinm,,t)  (11)
Now for K, small, equation (11) can be reduced to
Aoy (1) = A[coscoct - K;sinaw_t-sin a)Mt] (12)

Equation (12) looks like a transmitted carrier amplitude modulated waveform except that
the lower sideband produced by (12) has a reversed phase from the amplitude modulation
case. Therefore, the resultant sideband vector is always in phase quadrature for
narrowband as opposed to in-phase for amplitude modulation. Thus, besides producing
phase variations, narrowband PM also appears to produce small amplitude changes as
well.

Since the narrowband PM waveform will have the same frequency spectrum as a Double
Sideband Transmitted Carrier Amplitude Modulated (DSTC AM) waveform, the
cyclotron’s response to small phase modulations will be identical to the cyclotron’s
response to amplitude modulations. Since the cyclotron is a second order resonator, this
response is a first order system whose pole is determined from the resonator’s Q factor as
discussed in the RF note. The narrowband approximation will suffice for our control
system since during normal operations, the control system will be responding to small
noise phase modulations which should satisfy the requirements of narrowband PM.

The measurements presented within the RF note were the result of a modulation index
equal to 2-4. When the modulation becomes greater than 1, the narrowband
approximation begins to fail and we must perform a wideband PM analysis. For the sake
of design, we will approximate the cyclotron’s phase response with a second order
system whose pole is not equal to half of the resonator’s bandwidth, but whose pole is
equal to the full resonator’s bandwidth. Although the system noise should satisfy
requirements for the narrowband case, the second order approximation will allow for
system stability during any initial 3-4 degree phase errors. If a control system is designed
to be stable for the second order approximation, it will most definitely be stable for the
single order approximation of narrowband PM.
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Wideband PM

For wideband PM, we must work with the base form of the PM waveform as given in
eg.(9) repeated here:

Aoy (1) = Acos(o t + K, sinm, t)  (9)

This is an analysis of a single sinusoidal modulating signal. To simplify the analysis, the
PM waveform is expressed in exponential notation as

APM (t) = Re{Aeja’ctejKlet} (13)

: . . : o . 2z
The second exponential function of equation (13) is periodic with period P It can
M
thus be expanded into a complex Fourier Series given as

+00
jK{sinw E jnw
ej 1Sinoyt — Cnejn mt (14)

where the Fourier coefficients can be computed as

had IejKlSiante_jantdt (15)

C”:27r

Vi

The above equation is a function of n and K, and is well known as an integral
representation of the n™ order Bessel function of the first kind.

In wideband PM, what happens is that the frequency spectrum of the PM waveform
becomes an infinite series of discrete frequency components separated in frequency by
®,, and with a magnitude equal to a coefficient given by a Bessel function. For a small

modulation index, the magnitudes of the coefficients decay rapidly as n increases and
thus only a few frequency components exist within the spectrum of the PM waveform.
For a large modulation index, the coefficients do not decay as rapidly and more
coefficients must be included; resulting in a wider frequency spectrum for the PM
waveform.

In the case of the cyclotron, as the modulation index increases, the bandwidth of the
resultant waveform increases, and the cyclotron’s resonate response attenuates some of
these frequency components; thus producing a rather complex frequency response to
phase modulations. A more detailed account of wideband PM can be found in the
references. We are assuming that our phase noise will be within the narrowband case;
therefore, the wideband case will not be investigated any further at this point.
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Appendix C

Effect of the Gain BandWidth Product (GBWP) On the Closed-Loop Gain of
an Op-Amp

The open-loop gain of a practical op-amp is finite and decreases with increasing
frequency. Thus, a practical op-amp cannot be considered to have the infinite open-loop
gain which derives a constant input-to-output relationship. Usually, the frequency
response of the open-loop gain can be expressed as a first order system whose 3dB
frequency is denoted w,,, . The resulting mathematical expression for the open-loop gain

is thus

ADC
A, (s) = @

S
1+

W34p

where A, is the open-loop gain at DC. For frequencies much higher than @, , the
above equation can be approximated by

Apc - Dy4p
A (s) = e (2)

Thus, A, (s) reaches unity gain (or 0dB) at a frequency of
@y = Apc "Wgs (3)

The above expression for the unity gain frequency, @, , is also known as the Gain
BandWidth Product (GBWP). This value is given on op-amp data sheets.

So what kind of effect does this frequency dependent open-loop gain have on the closed-
loop gain? To analyze this, we first look at the gain of an inverting op-amp.

The output-to-input relationship for an inverting op-amp with open-loop gain A, (s), can
be expressed as:

v,(9) R, /R,
vi(s) 1+ (1+R,/R)/A(s)

(4)
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This equation reduces to the familiar inverting gain equation when A, (s) becomes the

ideal infinite case for all frequencies. Substituting eg.(2) into eq.(4) and using the
expression of eq.(3) we obtain:

vy(s) ~R, /R,
vi(s) , @RIR) s
Aoc o, | (1+R, /R,

(%)

In typical applications A, >> (1+ R, / R,), thereby reducing equation (5) into

Vo(s) -R, /R,
v.(s) S
L o 1A+ R, IR)

(6)

Therefore, the inverting op-amp gain has a single order pole which is a function of the
DC gain of R, / R,. The 3dB frequency is thus seen to be

,

T (1+R,/R,) (7)

Thus as the DC gain is increased, the pole gets smaller; thereby deteriorating the
frequency response. A similar analysis of the non-inverting configuration will give an
identical 3dB frequency as in eq(6). However, the non-inverting configuration is usually
used as a buffer amp with R, =0. Thus the 3dB frequency will be equal to the GBWP

frequency for a buffer amp. Furthermore, when we chain n op-amps in series, the
overall response will thus have n poles at the 3dB frequency given by eq.(6).

The current K1200 modules use PMI OP-17 op-amps whose GBWP is rated at 30 MHz.
The typical number of op-amps used in series within these modules is around 3, each at
approximately unity gain. Thus, the overall response due to the op-amps would be 3
poles at a frequency of 15 MHz; clearly much faster than the responses that were
measured for current K1200 Phase Shifter.

The potential RF modules use PMI OP-400 op-amps whose GBWP is only 500 kHz.
When measuring the response of these modules, all op-amp gains were set to unity,
therefore producing a 3dB frequency close to 250 kHz for each op-amp. The typical
number of series op-amps for the potential RF modules was 3. The potential 360° phase
detector magnitude response was not even measured far beyond the 25 kHz point at
which the op-amp phase response would kick in. However, the potential 360° phase
shifter had a measurable response well up to 2 MHz. Thus, it is reasonable to assume
that the measured response was mainly due to its op-amps.
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Experimental Measurement Data

39



