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Introduction 
 
This note develops a technique that simplifies specifying the boundary conditions for 3D 
problems in the FEA analysis program “FlexPDE” from PDE Solutions 
(www.pdesolutions.com). I have been using this program almost from the time it was 
released under a different name by a different company.  The program began as a 2D 
scalar solver and has evolved a lot in the years with a 3D version now available.  A user 
completely describes the problem equations, boundaries, and boundary conditions in the 
input text file.  As a result, the program is not limited to any pre-programmed problem set 
as is true with many other programs.  Additionally, it completely automates the finite 
element mesh generation and refinement process. 
 
The program applies scalar boundary conditions consisting of both “Value” boundary 
conditions and so called “Natural” boundary conditions.   The natural boundary 
conditions are referred to as “insulating conditions” and their effect is based on the 
particular form of the user equations.  Since this is a scalar solver, vector based boundary 
equations are not straightforward unless they fall on constant coordinate surfaces.  A 
combination of these effects has led me to develop a method of solving for the resonant 
frequency and fields within a 3D TEM mode (transmission line mode) resonator that 
simplifies and standardizes the problem of specifying the boundary conditions. 
 
FlexPDE applies integration-by-parts to all terms of the user specified partial differential 
equation to be solved that contain second-order derivatives of the system variables.  As 
far as electromagnetic fields are concerned, this basically means applying either Stokes’s 
theorem or Gauss’s law to specify the fields on the boundaries.  The Natural boundary 
condition (BC) specifies the resulting integrand.  In the following examples, A is a vector 
field, u is a scalar field and n is a unit normal to the enclosing surface or surrounding 
boundary.  
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Development 
 
In a TEM mode resonator, no field components are directed along the wave path. The 
TEM condition is defined by fields that obey: 
 

0=×∇ tt E    and  0=×∇ tt H  
 
In the above relationships, the “t” subscript specifies the components and operators 
existing or acting transverse to the wave direction.  For simple problems, such as those 
found in most textbooks, one can take the wave direction to be uniformly along one axis 
normally taken to be the z axis.  The technique to be developed here is not limited to 
wave propagation along one or more coordinate axis’s.  Another consequence of the 
above relationships is that the transverse fields may be described by the transverse 
gradient of a scalar field. 
 

VE tt −∇=    and  mtt VH −∇=  
 
At this point, it is useful to review the form of the standing wave pattern for the potential 
field along a ¼ wave resonant coaxial transmission line with outer radius “b” and inner 
radius “a”. 
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The basic form of the above equation is found in many resonant systems and may be cast 
into the more general form 
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where in this case 
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The subscript “p” is taken to mean parallel to the wave direction and as before “t” means 
transverse to the wave direction.  With these ideas in mind, the technique can be 
developed. 
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Technique:  Solve for a scalar field (V) that can be resolved into a scalar field (Vt) 
representing the transverse field components that obey the electrostatic field solution 
multiplying a scalar field (Vp) that represents the field behavior along the wave direction. 
 
The scalar field must obey the Helmholtz equation; 
 

022 =+∇ VKV  
 

022 =+∇⇒ ptpt VVKVV  
 

( ) 02 222 =+∇•∇+∇+∇⇒ pttppttp VVKVVVVVV  
 

Since Vp only varies along the wave direction and Vt only varies transverse to the wave 
direction (i.e. 0=∇=∇ tppt VV ) then the term ( ) 02 =∇•∇ tp VV  . Additionally, Vt 
describes a field identical to a charge free electrostatic field that is known to obey 
Laplace’s equation 02 =∇ tV  .  Using this information the equation may be separated into 
 

02 =∇ tV ,    
 

and 
 

022 =+∇ pp VKV  with μεω 22 =K  

 
 
E, H  Field, ω 
 
 
For the Electric Field: 
 

ttppttttptpttt VVVVVVVVVE ∇−=∇−∇−=−∇=−∇=     
 

since 0=∇ ptV . 
 

Note: tpttttpttt VVEVVVV ∇−=∴∇=∇+∇=∇  
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For the Magnetic Field: 
 

tt HjE ωμ−=×∇     
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since 0=∇×∇ tV  

 
For ω: 
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Summary Equations 
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Test Case 
 
The following coaxial disk resonator is analyzed in 2.5D and 3D.  The 2.5D analysis 
exploits the circularly symmetric condition using a standard technique, whereas the 3D 
analysis is done using the technique developed here.  The resonator is assumed 
symmetric about the large circular end surface and shorted at the small circular end 
surface.  

X

-0.6

 0.6

Y

 0.6

-0.6

Z
   

0.
 0

.7
5

 
 
 The 2.5D analysis solves the equation 02 =−×∇×∇ φφ HKH with the boundary 
conditions VALUE( φH )=0 on the large end and NATURAL( φH )=0 on all other 
surfaces.  The natural boundary condition in this case specifies the value of  φHn ×∇×  

that by Maxwell’s equations is equivalent to setting the tangential components of E to 0.   
 
The 3D case boundary conditions for Vt are VALUE(Vt)=0 on the outer boundaries and 
VALUE(Vt)=1 on the inner boundaries spanning from the large to small coaxial ends 
with both the large and small coaxial end surfaces set to NATURAL(Vt)=0.  The 
boundary conditions for Vp are VALUE(Vp)=1 on the large coaxial end surface 
 VALUE(Vp)=0 on the small coaxial end surface with NATURAL(Vp)=0 on all other 
surfaces.   
 
Appendix I and II print the input files for these cases for more detailed information.  The 
following table summarizes the results. 
 

 2.5D 3D 

F(MHz) 58.08 59.98 

Q 9800 9630 

% error 0 3.3 

 
The following plots compare the results from the 2.5D to the 3D analysis.  The 2.5D 
results do not include a potential plot because one is not possible. 
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2.5D  Blank, Grid, Hmag, Emag 3D  V, Grid, Hmag, Emag 

 Quarter Wave Resonator

XYZ_3D_Disk_Mode:  Grid#3  p2  Nodes=8223 Cells=4857 RMS Err= 1.3e-4
Stage 1  

15:29:52 4/26/05
FlexPDE 4.2.9

Y

-0.6 -0.3 0. 0.3 0.6

Z

0.

0.3

0.6

0.9

o

x

V
ON x=0

 1.05
 1.00
 0.95
 0.90
 0.85
 0.80
 0.75
 0.70
 0.65
 0.60
 0.55
 0.50
 0.45
 0.40
 0.35
 0.30
 0.25
 0.20
 0.15
 0.10
 0.05
 0.00
-0.05

Quarter Wave Resonator

RZ_2D_Resonator_Disk:  Grid#4  p2  Nodes=874 Cells=385 RMS Err= 1.7e-4
Mode 1  Lambda= 1.4819  

09:00:07 6/23/05
FlexPDE 4.2.9

R

0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Z

0.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r,z

 

X
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Y

 0.6

-0.6

Z
   

0.
 0
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5

 
Quarter Wave Resonator

RZ_2D_Resonator_Disk:  Grid#4  p2  Nodes=874 Cells=385 RMS Err= 1.7e-4
Mode 1  Lambda= 1.4819  

09:00:07 6/23/05
FlexPDE 4.2.9

R

0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Z

0.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

o

x Hmag

 1.70
 1.60
 1.50
 1.40
 1.30
 1.20
 1.10
 1.00
 0.90
 0.80
 0.70
 0.60
 0.50
 0.40
 0.30
 0.20
 0.10
 0.00

Quarter Wave Resonator

XYZ_3D_Disk_Mode:  Grid#3  p2  Nodes=8223 Cells=4857 RMS Err= 1.3e-4
Stage 1  

15:29:52 4/26/05
FlexPDE 4.2.9

Y

-0.6 -0.3 0. 0.3 0.6

Z

0.

0.3

0.6

0.9

o

x

Hmag
ON x=0

 5.10
 4.80
 4.50
 4.20
 3.90
 3.60
 3.30
 3.00
 2.70
 2.40
 2.10
 1.80
 1.50
 1.20
 0.90
 0.60
 0.30
 0.00

Scale = E-2

 
Quarter Wave Resonator

RZ_2D_Resonator_Disk:  Grid#4  p2  Nodes=874 Cells=385 RMS Err= 1.7e-4
Mode 1  Lambda= 1.4819  

09:00:07 6/23/05
FlexPDE 4.2.9

R

0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Z

0.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

o

x

Emag

 900.
 850.
 800.
 750.
 700.
 650.
 600.
 550.
 500.
 450.
 400.
 350.
 300.
 250.
 200.
 150.
 100.
 50.0
 0.00

Quarter Wave Resonator

XYZ_3D_Disk_Mode:  Grid#3  p2  Nodes=8223 Cells=4857 RMS Err= 1.3e-4
Stage 1  

15:29:52 4/26/05
FlexPDE 4.2.9

Y

-0.6 -0.3 0. 0.3 0.6

Z

0.

0.3

0.6

0.9

o

x

Emag
ON x=0

 16.0
 15.5
 15.0
 14.5
 14.0
 13.5
 13.0
 12.5
 12.0
 11.5
 11.0
 10.5
 10.0
 9.50
 9.00
 8.50
 8.00
 7.50
 7.00
 6.50
 6.00
 5.50
 5.00
 4.50
 4.00
 3.50
 3.00
 2.50
 2.00
 1.50
 1.00
 0.50
 0.00
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Appendix I  (The 2.5D FlexPDE input file) 
 
TITLE                                                           
   '2.5D Quarter Wave Resonator' 
 
Coordinates 
   ycylinder("r","z") 
  
SELECT 
   errlim=1E-3 
   modes = 2 
   thermal_colors on 
   plotintegrate off 
  
VARIABLES 
  Hphi 
  
DEFINITIONS 
 
 { Resonator Extents in Meters } 
  
     r1= 0.1 r2=0.2 r3=0.4 r4=0.6 L1= 0.1 L2=0.2 L3=0.75 
  
 { Material Constants } 
  
   eps0= 8.854e-12  { Farads/m }             { Permitivity of Free Space} 
   epr=1.0     { Relative Permitivity } 
   mus0=4*pi*1e-7 { Henries/m }  { Permeability of Free Space } 
   mur=1.0     { Relative Permeability } 
   eps= epr*eps0         { Resultant Permitivity } 
   mus= mur*mus0    { Resultant Permeability } 
   sigma=5.8e+7 { mhos/m }   { conductivity of copper at 20 degrees C } 
   Vuser=1.05 { volts peak }   { user desired peak voltage on "user" path } 
  
 { Computed Results } 
  
   omega=sqrt(lambda/(mus*eps))  { Angular Frequency } 
   freq=omega/(2*pi)    { Frequency } 
   H=vector(0,0,Hphi) 
   Hmag=Magnitude(H) 
   Er=-(1/(omega*eps))*dz(Hphi) 
   Ez=(1/(omega*eps))*(1/r)*dr(r*Hphi) 
   E=vector(Er,Ez) 
   Emag=Magnitude(E) 
   RR=sqrt((mus*omega)/(2*sigma))   { Surface Resistance } 
   PC=(1/2)*RR*Sintegral(abs(Hmag)^2,'perimeter') { Conduction Losses } 
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   UE=(eps/2)*integral(Emag^2,'cavity')  { Stored Electric Energy } 
   UH=(mus/2)*integral(Hmag^2,'cavity')  { Stored Magnetic Energy } 
   Q=(omega*UE)/PC     { Resonator Quality Factor } 
  
 { User Scaling } 
  
   V=-bintegral(tangential(E),'user')   { Voltage along user path } 
   Kfactor=abs(Vuser/V)    { user scaling factor based on Vuser 
} 
   PCS=PC*Kfactor^2     { Scaled Conduction Losses } 
   UES=UE*Kfactor^2    { Scaled Stored Energy } 
   UHS=UH*Kfactor^2 
   CS=(2*UE)/abs(V)^2    { User Path Shunt Capacitance } 
   LS=1/(omega^2*CS)    { User Path Shunt Inductance } 
   RS=Q/(omega*CS)     { User Path Shunt Resistance } 
  
 { Equations to be Solved } 
   
EQUATIONS 
  Hphi: Curl(Curl(Hphi))-lambda*Hphi=0 
  ! Hphi: Div(Grad(Hphi))+lambda*Hphi=0 
  
 { Resonator Boundaries and Boundary Conditions } 
  
BOUNDARIES 
region 1 'cavity'      
   start 'perimeter' (r1, L1)          
      Natural(Hphi)=0 line to (r3, L1) 
         line to (r3, 0) 
      Value(Hphi)=0  line to (r4, 0) 
      Natural(Hphi)=0 line to (r4, L2) 
          line to (r2, L2) 
          line to (r2, L3) 
          line to (r1, L3) 
         line to finish 
  
 { Define the User Path } 
  
feature 1 
   start 'User' (r3, 0) line to (r4, 0) 
  
 { Requested Outputs for each Mode } 
  
PLOTS      
    grid(r,z)  
    contour(Er) painted 



214-0126-01-01_00 

 10

    contour(Ez) painted 
    contour(Hmag) painted 
    contour(Emag) painted 
    elevation(Emag) ON 'perimeter' 
    elevation(Er) from (r1,0) to (r1,L3) 
    elevation(Er) on 'user' 
    vector(E) norm notips 
  
SUMMARY 
   report(freq) as "frequency" 
   report(lambda) 
   report(UES) 
   report(Q) 
   report(UHS) 
   report(CS) 
   report(LS) 
   report(PCS) 
   report(UES) 
   report(Vuser) 
END 
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Appendix II  (The 3D FlexPDE input file) 
 
TITLE                                                            
   '3D analysis of a quarter wave case' 
  
   { Comment out coordinates section for rectangular case } 
  
Coordinates 
   Cartesian3 
  
SELECT 
   errlim=5E-4 
   stages=1 
   thermal_colors on 
   plotintegrate off 
  
VARIABLES 
   Vt 
   Vp 
  
 DEFINITIONS 
  
 { Resonator Extents in Meters } 
  
    r1= 0.1 r2=0.2 r3=0.4 r4=0.6 L1= 0.1 L2=0.2 L3=0.75     { Resonator 
Maxumum Extents } 
  
 { Material Constants } 
  
   eps0= 8.854e-12  { Farads/m }            { Permitivity of Free Space} 
   epr=1.0    { Relative Permitivity } 
   mus0=4*pi*1e-7 { Henries/m } { Permeability of Free Space } 
   mur=1.0    { Relative Permeability } 
   eps= epr*eps0        { Resultant Permitivity } 
   mus= mur*mus0   { Resultant Permeability } 
   eta = sqrt(mus/eps)   { impedance of space } 
   sigma=5.8e+7 { mhos/m }  { conductivity of copper at 20 degrees C } 
   Vuser=100 { volts peak }  { user desired peak voltage on "user" path } 
  
 { Computed Results } 
  
   lambda1=1.380 + stage*0.2  { Mode 1 eigenvalue } 
   !lambda1=21.54930+ stage*0.2 { Mode 2 eigenvalue } 
  
    omega=sqrt(lambda1/(mus*eps)) { Angular Frequency } 
    freq=omega/(2*pi)   { Frequency } 
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   V=Vp*Vt       { Voltage } 
   E=-Vp*Grad(Vt)-Vt*Grad(Vp)    { Electric Field } 
   H=(1/(omega*mus))*cross(grad(Vp),grad(Vt))  { Magnetic Field } 
   Emag=Magnitude(E) 
   Hmag=Magnitude(H) 
   UE=(eps/2)*integral(Emag^2)    { Stored Electric Energy } 
   UH=(mus/2)*integral(Hmag^2)    { Stored Magnetic Energy } 
   RR=sqrt((mus*omega)/(2*sigma))    { Surface Resistance } 
   PC=(1/2)*RR*Sintegral(abs(Hmag)^2)   { Conduction Losses } 
   Q=(omega*UE)/PC      { Resonator Quality Factor } 
   error = abs(1-sqrt(UE/UH))*100    { +/- error in resonant 
frequency } 
  
 { Equations to be Solved } 
  
EQUATIONS 
   Vp: Div(Grad(Vp)) + Lambda1*Vp=0 
   Vt: Div(Grad(Vt))=0 
  
 { Geometry } 
  
EXTRUSION 
   Surface 'Open' z=0 
     Layer 'Low_Z' 
   Surface 'S1' z=L1 
     Layer 'High_Z' 
   Surface 'S2' z=L2 
    Layer 'Stem' 
   Surface 'Short' z=L3 
  
 { Resonator Boundaries and Boundary Conditions } 
  
BOUNDARIES 
    Surface 'Open' Natural(Vt)=0 Value(Vp)=1 
    Surface 'Short' Natural(Vt)=0 Value(Vp)=0 
  
region 1 'Extents' 
   start 'outer' (r4, 0) Value(Vt)=0 Natural(Vp)=0          
       ARC (CENTER =0,0) ANGLE=360 to finish 
  
Limited region 'V1' 
   Layer 'Low_Z' VOID 
   start 'outer' (r3, 0) Value(Vt)=1 Natural(Vp)=0        
       ARC (CENTER =0,0) ANGLE=360 to finish 
   Surface 'S1' Value(Vt)=1 Natural(Vp)=0 
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Limited region 'V2' 
   Layer 'High_Z' VOID 
   start 'outer' (r1, 0) Value(Vt)=1 Natural(Vp)=0        
       ARC (CENTER =0,0) ANGLE=360 to finish 
  
Limited region 'V3' 
   Layer 'Stem' VOID 
   start 'outer' (r1, 0) Value(Vt)=1 Natural(Vp)=0        
       ARC (CENTER =0,0) ANGLE=360 to finish 
  
Limited region 'V4' 
   Layer 'Stem' VOID 
   start 'outer' (r4, 0)            
       ARC (CENTER =0,0) ANGLE=360 to finish 
   start 'inner' (r2, 0) Value(Vt)=0 Natural(Vp)=0 
        ARC (CENTER =0,0) ANGLE=360 to finish 
   Surface 'S2' Value(Vt)=0 Natural(Vp)=0 
  
 { Requested Outputs for each Mode } 
  
PLOTS      
   contour(Vp) ON x=0 painted 
   contour(Vt) ON x=0 painted 
   contour(V) ON x=0 painted 
   contour(Hmag) ON x=0 painted 
   contour(Emag) ON x=0 painted 
  
SUMMARY 
  
   report(freq) as "frequency" 
   report(PC) 
   report(Q) 
   report(error) 
   report(UE) 
   report(UH) 
  
END 
 


